Sensor Location For Network Flow And Origin-Destination Estimation With Multiple Vehicle Classes

Other Titles

The need for multi-class origin-destination (O-D) estimation and link volume estimation requires multi-class observations from sensors. This dissertation has established a new sensor location model that includes: 1) multiple vehicle classes; 2) a variety of data types from different types of sensors; and 3) a focus on both link-based and O-D based flow estimation. The model seeks a solution that maximizes the overall information content from sensors, subject to a budget constraint. An efficient twophase metaheuristic algorithm is developed to solve the problem. The model is based on a set of linear equations that connect O-D flows, link flows and sensor observations. Concepts from Kalman filtering are used to define the information content from a set of sensors as the trace of the posterior covariance matrix of flow estimates, and to create a linear update mechanism for the precision matrix as new sensors are added or deleted from the solution set. Sensor location decisions are nonlinearly related to information content because the precision matrix must be inverted to construct the covariance matrix which is the basis for measuring information. The resulting model is a nonlinear knapsack problem. The two-phase search algorithm proposed addresses this nonlinear, nonseparable integer sensor location problem. A greedy phase generates an initial solution, feeding into a Tabu Search phase which swaps sensors along the budget constraint. The neighbor generation in Tabu search is a combination of a fixed swapout strategy with a guided random swap-in strategy. Extensive computational experiments have been performed on a standard test network. These tests verify the effectiveness of the problem formulation and solution algorithm. A case study on Rockland County, NY demonstrates that the sensor location method developed in this dissertation can successfully allocate sensors in realistic networks, and thus has significant practical value.

Journal / Series
Volume & Issue
Date Issued
Sensor location; Network flow estimation; Metaheuristics
Effective Date
Expiration Date
Union Local
Number of Workers
Committee Chair
Turnquist,Mark Alan
Committee Co-Chair
Committee Member
Degree Discipline
Civil and Environmental Engineering
Degree Name
Ph. D., Civil and Environmental Engineering
Degree Level
Doctor of Philosophy
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
Link(s) to Reference(s)
Previously Published As
Government Document
Other Identifiers
Rights URI
dissertation or thesis
Accessibility Feature
Accessibility Hazard
Accessibility Summary
Link(s) to Catalog Record