eCommons

 

Data-Driven Dynamics: Estimation in the Presence of Noise

Other Titles

Abstract

Dynamical systems theory is routinely applied to a mathematical model of a process rather than the process itself. In contrast, this dissertation advances a data-driven approach to dynamics in which conclusions are drawn directly from observations of the process of interest. The focus here is on laying mathematical foundations for this perspective; thus the data has been idealized as paths of stochastic differential equations (SDEs). An example that makes this summary concrete is the study of locomotion: A "routine'' approach is to analyze a model; for instance, is the runner's gait stable or unstable per the model? Instead, this dissertation is motivated by motion capture data---a time series reminiscent of a periodic process perturbed by noise. A prevailing theory is that organisms remain upright by using sensory information (akin to motion capture data) to subconsciously estimate the stability of their gait. Chapter 2 studies this estimation problem mathematically. It derives an inequality that quantifies the uncertainty intrinsic to Floquet multiplier estimates constructed from SDE paths. This inequality governs a sufficiently broad class of estimation strategies that the bound it establishes sheds light on the feasibility of the theory about how animals remain upright. The "data-first" perspective pursued in Chapter 2 is so underdeveloped in the context of dynamics that the other chapters of this dissertation arise naturally: Do certain types of noise yield better multiplier estimates? (Chapter 3.) And what should be done when observations of the process are costly? (Chapter 4.)

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2018-12-30

Publisher

Keywords

Statistics; Applied mathematics

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Guckenheimer, John Mark

Committee Co-Chair

Committee Member

Hooker, Giles J.
Levine, Lionel

Degree Discipline

Applied Mathematics

Degree Name

Ph. D., Applied Mathematics

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record