eCommons

 

Fast Polar Decomposition of an Arbitrary Matrix

Other Titles

Abstract

The polar decomposition of an mxn matrix A of full rank, where mn, can be computed using a quadratically convergent algorithm of Higham [SIAM J. Sci. Stat. Comput., 7 (1986), pp.1160-1174]. The algorithm is based on a Newton iteration involving a matrix inverse. We show how with the use of a preliminary complete orthogonal decomposition the algorithm can be extended to arbitrary A. We also describe how to use the algorithm to compute the positive semi-definite square root of a Hermitian positive semi-definite matrix. We formulate a hybrid algorithm which adaptively switches from the matrix inversion based iteration to a matrix multiplication based iteration due to Kovarik, and to Bjorck and Bowie. The decision when to switch is made using a condition estimator. This "matrix multiplication rich" algorithm is shown to be more efficient on machines for which matrix multiplication can be executed 1.5 times faster than matrix inversion.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

1988-10

Publisher

Cornell University

Keywords

computer science; technical report

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR88-942

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record