Aspects of the Computational Content of Proofs
No Access Until
Permanent Link(s)
Collections
Other Titles
Author(s)
Abstract
In this thesis, we explore three aspects of the computational content of proofs. These are: a computational interpretation of the metatheory of intuitionistic propositional logic, an extension of this approach to intuitionistic predicate logic, and a computational interpretation of classical sequent proofs. We begin with a study of the computational aspects of validity, provability, and completeness for intuitionistic propositional logic. We give a constructive proof of completeness of Kripke models for intuitionistic propositional calculus, such that the computational content of the proof is a form of the tableau algorithm. Since the evidence for provability we construct is actually a term in typed