Computing the Singular Value Decomposition on a Distributed System of Vector Processors

Other Titles
Abstract
Jacobi methods for computing the singular value decomposition (SVD) of a matrix are ideally suited for multiprocessor environments due to their inherent parallelism. In this paper we show how a block version of the two-sided Jacobi method can be used to compute the SVD efficiently on a distributed architecture. We compare two variants of this method that differ mainly in the degree to which they diagonalize a given subproblem. The first method is a true block generalization of the scalar scheme in that each off-diagonal block is completely annihilated. The second method is a scalar Jacobi algorithm reorganized in such a manner that it conforms to the block decomposition of the problem. We have performed experiments on the Loosely Coupled Array Processor (LCAP) system at IBM Kingston which for the purposes of this article can be viewed as a ring of up to ten FPS-164/MAX array processors. These experiments show that the block Jacobi algorithm performs well on a distributed system, especially when the processors have vector processing hardware. As an example, we were able to achieve a sustained performance of 159 MFlops on a 960-by-720 SVD problem using eight processors. A surprising outcome of these experiments is that the determining factor for the performance of the algorithm on a high-performance architecture is the subproblem solver, not the communication overhead of the algorithm.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
1987-09
Publisher
Cornell University
Keywords
computer science; technical report
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR87-869
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
technical report
Accessibility Feature
Accessibility Hazard
Accessibility Summary
Link(s) to Catalog Record