Quantitative Metabolic Analysis of Carbohydrate Co-Utilization in Pseudomonas protegens Pf-5
Loading...
No Access Until
Permanent Link(s)
Collections
Other Titles
Authors
Abstract
Species of the Pseudomonas genus thrive in various nutritional environments and have strong biocatalytic potential due to their diverse metabolic capabilities. Carbohydrate substrates are ubiquitous both in environmental matrices and in feedstocks for engineered bioconversion. Here we investigated the metabolic network for carbohydrate metabolism in P. protegens Pf-5. The genetic characterization of Pseudomonas protegens Pf-5 was recently completed. However, the inferred metabolic network structure has not yet been evaluated experimentally. We employed 13C-tracers and quantitative flux analysis to investigate the intracellular network for carbohydrate metabolism. Similar to other Pseudomonas species, P. protegens Pf-5 relied primarily on the Entner-Doudoroff (ED) pathway to connect initial glucose catabolism to downstream metabolic pathways. Flux quantitation revealed that, in lieu of the direct phosphorylation of glucose by glucose kinase, phosphorylation of oxidized products of glucose (gluconate and 2-ketogluconate) towards the ED pathway accounted for over 90% of consumed glucose and greater than 35% of consumed glucose was secreted as gluconate and 2-ketogluconate. Consistent with the lack of annotated pathways for the initial catabolism of pentoses and galactose in P. protegens Pf-5, only glucose was assimilated into intracellular metabolites in the presence of xylose, arabinose, or galactose. However, when glucose was fed simultaneously with fructose or mannose, co-uptake of these hexoses was evident, but glucose was preferred over fructose (3 to 1) and over mannose (4 to 1). Despite gene annotation of mannose catabolism toward fructose 6-phosphate, metabolite labeling patterns revealed that mannose-derived carbons specifically entered central carbon metabolism via fructose-1,6-bisphosphate, similarly to fructose catabolism. Remarkably, carbons from mannose and fructose were found to cycle backward through the upper Emden-Meyerhof-Parnas pathway to feed the ED pathway. Therefore, the operational metabolic network for processing carbohydrates in P. protegens Pf-5 prioritizes flux through the ED pathway to channel carbons to downstream metabolic pathways. Elucidation of the constitutive metabolic network in P. protegens is important for understanding its innate carbohydrate processing, thus laying the foundation for targeted metabolic engineering of this untapped Pseudomonas species.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
2018-12-30
Publisher
Keywords
metabolic flux analysis; Environmental engineering; metabolomics; Pseudomonas; Microbiology; Bioengineering; carbohydrate; co-utilization; hexose
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Aristilde, Ludmilla
Committee Co-Chair
Committee Member
Shapleigh, James P.
March, John C.
March, John C.
Degree Discipline
Biological and Environmental Engineering
Degree Name
M.S., Biological and Environmental Engineering
Degree Level
Master of Science
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
dissertation or thesis