Vehicle Travel Time Distribution Estimation And Map-Matching Via Markov Chain Monte Carlo Methods

Other Titles


We introduce two statistical methods for estimating vehicle travel time distributions on a road network, using Global Positioning System (GPS) data recorded during historical vehicle trips. In the first method, we use a model of the path taken by each vehicle in the data, the travel time on each road segment in the network, and the location and speed errors for each GPS observation. In the second method, we use a model of the entire travel time of each trip, and include covariates such as the types of roads traveled and time of day. We estimate the parameters of both models by Markov chain Monte Carlo methods. We compare the performance of these methods with two simpler methods, a recently published method, and commercially available travel time estimates, using data from ambulance trips in Toronto and simulated data. Our methods outperform the alternative methods in point and distribution estimation of outof-sample trip travel times. Our methods also provide more realistic estimates than the recently published method of the probability that an ambulance is able to respond to each intersection in Toronto within a time threshold. We also consider map-matching, i.e. estimating a vehicle's path from sparse and error-prone GPS data, which is an important sub-problem for travel time estimation. In practice, successive GPS location readings are frequently biased in the same direction. We introduce a statistical map-matching method that takes into account bias in GPS locations, leading to improved accuracy.

Journal / Series

Volume & Issue



Date Issued




Emergency medical services; Global Positioning System; Metropolis-Hastings sampling


Effective Date

Expiration Date




Union Local


Number of Workers

Committee Chair

Woodard, Dawn B.

Committee Co-Chair

Committee Member

Williamson, David P
Matteson, David
Henderson, Shane G.

Degree Discipline

Operations Research

Degree Name

Ph. D., Operations Research

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)


Link(s) to Reference(s)

Previously Published As

Government Document




Other Identifiers


Rights URI


dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record