eCommons

 

Asymmetric energetic costs in reciprocal-cross hybrids between carnivorous mice (Onychomys)

Other Titles

Abstract

Aerobic respiration is a fundamental physiological trait dependent on coordinated interactions between gene products of the mitochondrial and nuclear genomes. Mitonuclear mismatch in interspecific hybrids may contribute to reproductive isolation by inducing reduced viability (or even complete inviability) due to increased metabolic costs. However, few studies have tested for effects of mitonuclear mismatch on respiration at the whole-organism level. We explored how hybridization affects metabolic rate in closely related species of grasshopper mice (genus Onychomys) to better understand the role of metabolic costs in reproductive isolation. We measured metabolic rate across a range of temperatures to calculate basal metabolic rate (BMR) and cold-induced metabolic rate (MRc) in O. leucogaster, O. torridus and O. arenicola, and in reciprocal F1 hybrids between the latter two species. Within the genus, we found a negative correlation between mass-specific BMR and body mass. Although O. arenicola was smaller than O. torridus, hybrids from both directions of the cross resembled O. arenicola in body mass. In contrast, hybrid BMR was strongly influenced by the direction of the cross: reciprocal F1 hybrids were different from each other but indistinguishable from the maternal species. In addition, MRc was not significantly different between hybrids and either parental species. These patterns indicate that metabolic costs are not increased in Onychomys F1 hybrids and, while exposure of incompatibilities in F2 hybrids cannot be ruled out, suggest that mitonuclear mismatch does not act as a primary barrier to gene flow. Maternal matching of BMR is suggestive of a strong effect of mitochondrial genotype on metabolism in hybrids. Together, our findings provide insight into the metabolic consequences of hybridization, a topic that is understudied in mammals.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2016-12-01

Publisher

The Company of Biologists Ltd.

Keywords

Mitonuclear mismatch; Metabolic rate; Interspecific hybrids; F1 hybrid; OXPHOS; Reproductive isolation

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Journal of Experimental Biology (2016), 219: 3803-3809

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

article

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record