eCommons

DigitalCollections@ILR
ILR School
 

Reducing Uncertainty in the American Community Survey through Data-Driven Regionalization

Other Titles

Abstract

The American Community Survey (ACS) is the largest US survey of households and is the principal source for neighborhood scale information about the US population and economy. The ACS is used to allocate billions in federal spending and is a critical input to social scientific research in the US. However, estimates from the ACS can be highly unreliable. For example, in over 72% of census tracts the estimated number of children under 5 in poverty has a margin of error greater than the estimate. Uncertainty of this magnitude complicates the use of social data in policy making, research, and governance. This article develops a spatial optimization algorithm that is capable of reducing the margins of error in survey data via the creation of new composite geographies, a process called regionalization. Regionalization is a complex combinatorial problem. Here rather than focusing on the technical aspects of regionalization we demonstrate how to use a purpose built open source regionalization algorithm to post-process survey data in order to reduce the margins of error to some user-specified threshold.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2014-11-07

Publisher

Keywords

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record