eCommons

 

A Theory of Indexing

Other Titles

Abstract

THe content analysis, or indexing problem, is fundamental in information storage and retrieval. Several automatic procedures are examined for the assignment of significance values to the terms, or keywords, identifying the documents of a collection. Good and bad index terms are characterized by objective measures, leading to the conclusion that the best index terms are those with medium document frequency and skewed frequency distributions. A discrimination value model is introduced which makes it possible to construct effective indexing vocabularies by using phrase and thesaurus transformations to modify poor discriminators - those whose document frequency is too high, or too low - into better discriminators, and hence more useful index terms. Test results are included which illustrate the effectiveness of the theory.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

1974-03

Publisher

Cornell University

Keywords

computer science; technical report

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR74-203

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record