Implementing Agglomerative Hierarchic Clustering Algorithms for Use in Document Retrieval
Loading...
No Access Until
Permanent Link(s)
Collections
Other Titles
Authors
Abstract
Searching hierarchically clustered document collections can be effective, but creating the cluster hierarchies is expensive since there are both many documents and many terms. However, the information in the document-term matrix is sparse: documents are usually indexed by relatively few terms. This paper describes the implementations of three agglomerative hierarchic clustering algorithms that exploit this sparsity so that collections much larger than the algorithms' worst case running times would suggest can be clustered. The implementations described in the paper have been used to cluster a collection of 12,000 documents.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
1986-07
Publisher
Cornell University
Keywords
computer science; technical report
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR86-765
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
technical report