Relations Between Diagonalization, Proof Systems, and Complexity Gaps

Other Titles
Abstract
In this paper we study diagonal processes over time-bounded computations of one-tape Turing machines by diagonalizing only over those machines for which there exist formal proofs that they operate in the given time bound. This replaces the traditional "clock" in resource bounded diagonalization by formal proofs about running times and establishes close relations between properties of proof systems and existence of sharp time bounds for one-tape Turing machine complexity classses. These diagonalization methods also show that the Gap Theorem for resource bounded computations can hold only for those complexity classes which differ from the corresponding provable complexity classes. Furthermore, we show that there exist recursive time bounds $T(n)$ such that the class of languages for which we can formally prove the existence of Turing machines which accept them in time $T(n)$ differs form the class of languages accepted by Turing machines for which we can prove formally that they run in time $T(n)$.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
1977-06
Publisher
Cornell University
Keywords
computer science; technical report
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR77-312
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
technical report
Accessibility Feature
Accessibility Hazard
Accessibility Summary
Link(s) to Catalog Record