The Symbolic Computation of Functions of Sequences over Finite Alphabets with Given Transition Probabilities by Sequence Length Independent Algorithms

Other Titles
Abstract
A special case of the problem discussed in this paper occurs in connection with non-statistical classification and is introduced from this point of view. The special case concerns the computation of expectations of statistical functions of the "distance" between pairs of fixed length sequences over a binary alphabet with given a priori state transition probabilities. The general problem involves an extension to alphabets of arbitrary order and the comparison of an arbitrary number of fixed length sequences. Given a set of sequences, it is shown that for a large class of functions exact computation may be carried out by an algorithm whose computation time is independent of the length of the sequences. It is further shown that results for all functions of this class may be derived from a small number of basis functions. Two methods for computing basis functions are given. Basis functions for the commonly encountered special case involving pairs of binary sequences are given explicitly.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
1971-06
Publisher
Cornell University
Keywords
computer science; technical report
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR71-100
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
technical report
Accessibility Feature
Accessibility Hazard
Accessibility Summary
Link(s) to Catalog Record