eCommons

 

Piecewise Differentiable Minimization for Ill-posed Inverse Problems

dc.contributor.authorLi, Yuyingen_US
dc.date.accessioned2007-04-04T16:31:31Z
dc.date.available2007-04-04T16:31:31Z
dc.date.issued1996-08en_US
dc.description.abstractBased on minimizing a piece wise differentiable lp function subject to a single inequality constraint, this paper discusses algorithms for a discretized regularization problem for ill-posed inverse problems. We examine computational challenges of solving this regularization problem. Possible minimization algorithms such as the steepest descent method, iteratively weighted least squares (IRLS) method and a recent globally convergent affine scaling Newton approach are considered. Limitations and efficiency of these algorithms are demonstrated using the geophysical travel time tomographic inversion and image restoration applications.en_US
dc.format.extent243521 bytes
dc.format.extent243192 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.tc/96-252en_US
dc.identifier.urihttps://hdl.handle.net/1813/5583
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjecttheory centeren_US
dc.titlePiecewise Differentiable Minimization for Ill-posed Inverse Problemsen_US
dc.typetechnical reporten_US

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
96-252.pdf
Size:
237.81 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
96-252.ps
Size:
237.49 KB
Format:
Postscript Files