eCommons

 

Piecewise Differentiable Minimization for Ill-posed Inverse Problems

Other Titles

Author(s)

Abstract

Based on minimizing a piece wise differentiable lp function subject to a single inequality constraint, this paper discusses algorithms for a discretized regularization problem for ill-posed inverse problems. We examine computational challenges of solving this regularization problem. Possible minimization algorithms such as the steepest descent method, iteratively weighted least squares (IRLS) method and a recent globally convergent affine scaling Newton approach are considered. Limitations and efficiency of these algorithms are demonstrated using the geophysical travel time tomographic inversion and image restoration applications.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

1996-08

Publisher

Cornell University

Keywords

theory center

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.tc/96-252

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record