NetSlices: Scalable Multi-Core Packet Processing in User-Space

Other Titles
Abstract
Modern commodity operating systems do not provide developers with user-space abstractions for building high-speed packet processing applications. The conventional raw socket is inefficient and unable to take advantage of the emerging hardware, like multi-core processors and multi-queue network adapters. In this paper we present the NetSlice operating system abstraction. Unlike the conventional raw socket, NetSlice tightly couples the hardware and software packet processing resources, and provides the application with control over these resources. To reduce shared resource contention, NetSlice performs domain specific, coarse-grained, spatial partitioning of CPU cores, memory, and NICs. Moreover, it provides a streamlined communication channel between NICs and user-space. Although backward compatible with the conventional socket API, the \netslice API also provides batched (multi-) send/receive operations to amortize the cost of protection domain crossings. We show that complex user-space packet processors---like a protocol accelerator and an IPsec gateway---built from commodity components can scale linearly with the number of cores and operate at 10Gbps network line speeds.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
2012-07-18
Publisher
Keywords
Software routers; software packet processors; software router performance; operating systems support; user-space; multi-core
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
technical report
Accessibility Feature
Accessibility Hazard
Accessibility Summary
Link(s) to Catalog Record