Halting and Equivalence of Schemes over Recursive Theories

Other Titles
Abstract
Let S be a fixed first-order signature. In this note we consider the following decision problems. (i) Given a recursive ground theory T over S, a program scheme p over S, and input values specified by ground terms t1,...,tn, does p halt on input t1,...,tn in all models of T? (ii) Given a recursive ground theory T over S and two program schemes p and q over S, are p and q equivalent in all models of T? When T is empty, these two problems are the classical halting and equivalence problems for program schemes, respectively. We show that problem (i) is r.e.-complete and problem (ii) is Pi-0-2-complete. Both these problems remain hard for their respective complexity classes even if T is empty and S is restricted to contain only a single constant, a single unary function symbol, and a single monadic predicate. It follows from (ii) that there can exist no relatively complete deductive system for scheme equivalence.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
2002-10-28
Publisher
Cornell University
Keywords
computer science; technical report
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR2002-1881
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
technical report
Accessibility Feature
Accessibility Hazard
Accessibility Summary
Link(s) to Catalog Record