Qualitative Relational Mapping And Navigation For Long-Term Robotic Operation

Other Titles
Abstract
The research presented in this work focuses on several aspects of the remote operation of ground vehicles, notably Navigation and Mapping for autonomous robots and the effects of time delay in tele-operated vehicles. Navigation and mapping of large, unstructured spaces is achieved by accumulating constraints on the geometrical relationships between landmarks. These relationships are tracked using two qualitative representations of space, one based on qualitative angles between landmark triples, and a second which also considers qualitative edge lengths. For the first representation, measurements and graph inference are performed by way of manually computed lookup tables based on geometrical constraints on qualitative states. For the second representation, measurements are generated online using a branch-and-bound algorithm to solve a set of nonlinear feasibility problems, while lookup tables for inference are generated using a similar, offline approach. Estimates of the Relative Neighborhood Graph are extracted from the qualitative map and used to perform long-distance navigation. The effects of human control of remote vehicles are considered, focusing on the question of how operators are able to compensate for time delays when teleoperating vehicles in continuous motion. Statistical models fit to experimental data using the Least Angle Regression and Sparse Multinomial Regression algorithms show that human operators anticipate future control needs by predicting rover motion forward through time to determine predicted off-track errors. The relative contributions of environmental features to model predictive power is used to determine how feature 'importance' varies as a function of time delay.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
2014-05-25
Publisher
Keywords
Robotics; Mapping; Navigation
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Campbell, Mark
Committee Co-Chair
Committee Member
Peck, Mason
Psiaki, Mark Lockwood
Kress Gazit, Hadas
Degree Discipline
Mechanical Engineering
Degree Name
Ph. D., Mechanical Engineering
Degree Level
Doctor of Philosophy
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
dissertation or thesis
Accessibility Feature
Accessibility Hazard
Accessibility Summary
Link(s) to Catalog Record