Externally Dispersed Interferometry For Terrestrial Exoplanet Detection
Loading...
No Access Until
Permanent Link(s)
Collections
Other Titles
Authors
Abstract
Terrestrial exoplanets are observationally challenging to detect and characterize. Compared to gas giant exoplanets, terrestrial exoplanets introduce significantly smaller radial velocity signals and transit depths on their host stars. The signals are larger for terrestrial exoplanets orbiting M-dwarf stars, which have lower masses and radii than Sun-like F, G and K-type stars, and dominate stellar populations by number. Detecting exoplanets around M dwarfs is itself difficult because of their lower luminosities and lower flux at visible wavelengths, where most radial velocity and transit exoplanet surveys operate. I present here the motivation, development and results from a radial velocity program conducted on M dwarfs using near-infrared wavelengths, where M dwarf spectra peak in flux. To achieve high radial-velocity precision, I have used a technique called externally dispersed interferometry. It involves the combination of an interferometer and a moderate-resolution spectrograph on the 200 inch (5.1 m) Hale Telescope at Palomar Observatory. The TripleSpec Exoplanet Discovery Instrument, or TEDI, is the first such instrument to operate at nearinfrared wavelengths. Our results indicate that contamination by narrow absorption lines introduced by the Earth's atmosphere limit radial velocity performance to that which can detect gas giant planets. I have conducted a survey of nearby M dwarfs, and can rule out with 3[sigma] confidence the presence of short-period gas giant planets in circular orbits around a few nearby M dwarfs. The results of this experiment direct future extrasolar planet instrumentation toward spectral regions with little telluric contamination and with higher resolution, to detect terrestrial exoplanets orbiting M dwarfs.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
2011-05-31
Publisher
Keywords
Extrasolar Planets; Astronomical Instrumentation; Data Analysis and Techniques
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Lloyd, James
Committee Co-Chair
Committee Member
Squyres, Steven Weldon
Cordes, James Martin
Herter, Terry Lee
Lovelace, Richard V E
Cordes, James Martin
Herter, Terry Lee
Lovelace, Richard V E
Degree Discipline
Astronomy
Degree Name
Ph. D., Astronomy
Degree Level
Doctor of Philosophy
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
dissertation or thesis