eCommons

 

Methods For Functional Inference In The Proteome And Interactome

Other Titles

Abstract

Over the past several decades, biology has become an increasingly data-driven science. Due in large part to new techniques that allow massive collection of biological data, including next-generation sequencing and high-throughput experimental screening, many of the limitations currently facing the field are in the organization and interpretation of these data. In this dissertation, I present several computational methods and resources designed to organize and perform functional inference on these systems-level biological data sources. In Chapters 2 and 3, I describe the construction of a database and web tool to aid in foundational genomics research by providing predictions of interacting protein domains in interactomes and all-by-all conversions of popular variant identification formats. In Chapter 4, I describe the construction of the first whole-interactome protein interaction network in the fission yeast S. pombe, and, through comparisons with other complete networks in human and the budding yeast S. cerevisiae, demonstrate principles of functional evolution. Finally, in Chapters 5 and 6, I propose two new methods for functional genomic inference—an algorithm to predict cancer driver genes and mutations through 3D atomic clustering of somatic mutations and an ensemble machine learning method to predict the 3D interfaces of protein interactions by taking into account the evolutionary relationships and biophysical properties of proteins. Taken together, this suite of computational resources will help researchers interpret biological function on a genomic scale.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2017-01-30

Publisher

Keywords

Information science; Biology; Computer science

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Yu, Haiyuan

Committee Co-Chair

Committee Member

Myers, Christopher R
Elemento, Olivier
Bindel, David S.

Degree Discipline

Computational Biology

Degree Name

Ph. D., Computational Biology

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record