Methods For Functional Inference In The Proteome And Interactome
Loading...
No Access Until
Permanent Link(s)
Collections
Other Titles
Authors
Abstract
Over the past several decades, biology has become an increasingly data-driven science. Due in large part to new techniques that allow massive collection of biological data, including next-generation sequencing and high-throughput experimental screening, many of the limitations currently facing the field are in the organization and interpretation of these data. In this dissertation, I present several computational methods and resources designed to organize and perform functional inference on these systems-level biological data sources. In Chapters 2 and 3, I describe the construction of a database and web tool to aid in foundational genomics research by providing predictions of interacting protein domains in interactomes and all-by-all conversions of popular variant identification formats. In Chapter 4, I describe the construction of the first whole-interactome protein interaction network in the fission yeast S. pombe, and, through comparisons with other complete networks in human and the budding yeast S. cerevisiae, demonstrate principles of functional evolution. Finally, in Chapters 5 and 6, I propose two new methods for functional genomic inference—an algorithm to predict cancer driver genes and mutations through 3D atomic clustering of somatic mutations and an ensemble machine learning method to predict the 3D interfaces of protein interactions by taking into account the evolutionary relationships and biophysical properties of proteins. Taken together, this suite of computational resources will help researchers interpret biological function on a genomic scale.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
2017-01-30
Publisher
Keywords
Information science; Biology; Computer science
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Yu, Haiyuan
Committee Co-Chair
Committee Member
Myers, Christopher R
Elemento, Olivier
Bindel, David S.
Elemento, Olivier
Bindel, David S.
Degree Discipline
Computational Biology
Degree Name
Ph. D., Computational Biology
Degree Level
Doctor of Philosophy
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
dissertation or thesis