Finding Minimal Perfect Hash Functions
Loading...
No Access Until
Permanent Link(s)
Collections
Other Titles
Author(s)
Abstract
A heuristic is given for finding minimal perfect hash functions without extensive searching. The procedure is to construct a set of graph (or hypergraph) models for the dictionary, then choose one of the models for use in constructing the minimal perfect hashing function. The construction of this function relies on a backtracking algorithm for numbering the vertices of the graph. Careful selection of the graph model limits the time spent searching. Good results have been obtained for dictionaries of up to 181 words. Using the same techniques, non-minimal perfect hash functions have been found for sets of up to 667 words.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
1984-09
Publisher
Cornell University
Keywords
computer science; technical report
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR84-637
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
technical report