eCommons

 

A Radical Characterization of Abelian Varieties

dc.contributor.authorHui, Heung Shan Theodore
dc.contributor.chairZywina, David J.
dc.contributor.chairRamakrishna, Ravi Kumar
dc.contributor.committeeMemberSpeh, Birgit E M
dc.date.accessioned2018-04-26T14:18:17Z
dc.date.available2018-04-26T14:18:17Z
dc.date.issued2017-08-30
dc.description.abstractLet $A$ be a square-free abelian variety defined over a number field $K$. Let $S$ be a density one set of prime ideals $\p$ of $\mathcal{O}_K$. A famous theorem of Faltings says that the Frobenius polynomials $P_{A,\p}(x)$ for $\p\in S$ determine $A$ up to isogeny. We show that the prime factors of $|A(\FF_\p)|=P_{A,\p}(1)$ for $\p\in S$ also determine $A$ up to isogeny over an explicit finite extension of $K$. The proof relies on understanding the $\ell$-adic monodromy groups which come from the $\ell$-adic Galois representations of $A$, and the absolute Weyl group action on their weights. We also show that there exists an explicit integer $e\geq 1$ such that after replacing $K$ by a suitable finite extension, the Frobenius polynomials of $A$ at $\p$ must equal to the $e$-th power of a separable polynomial for a density one set of prime ideals $\p\subseteq\mathcal{O}_K$.
dc.identifier.doihttps://doi.org/10.7298/X41V5C30
dc.identifier.otherHui_cornellgrad_0058F_10398
dc.identifier.otherhttp://dissertations.umi.com/cornellgrad:10398
dc.identifier.otherbibid: 10361681
dc.identifier.urihttps://hdl.handle.net/1813/57004
dc.language.isoen_US
dc.subjectradical
dc.subjectGalois representations
dc.subjectMathematics
dc.subjectabelian varieties
dc.subjectmonodromy groups
dc.titleA Radical Characterization of Abelian Varieties
dc.typedissertation or thesis
dcterms.licensehttps://hdl.handle.net/1813/59810
thesis.degree.disciplineMathematics
thesis.degree.grantorCornell University
thesis.degree.levelDoctor of Philosophy
thesis.degree.namePh. D., Mathematics

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hui_cornellgrad_0058F_10398.pdf
Size:
490.34 KB
Format:
Adobe Portable Document Format