eCommons

 

Dealings with Data Physics, Machine Learning and Geometry

Other Titles

Abstract

Collecting and interpreting data is key to developing an understanding of the physical underpinnings of observable events. As such, questions of how to generate, curate and otherwise wrangle data become central as systems of interest become increasingly difficult to access experimentally and the sheer quantity of raw information explodes. The data explored in this dissertation covers a wide range of sources and methods. On the more traditional end, we explore simulation data of the two dimensional non-equilibrium random-field Ising model which we treat with a novel analytic normal form theory of the Renormalization Group. Branching out from condensed matter, we explore several machine learning and sampling methods in various contexts. The machine learning projects in particular include three lines of investigation: an unsupervised machine learning analysis of sectors of the economy extracted from stock return data, an analysis of the computational neural networks successfully applied to experimental ATLAS data in a recent Kaggle challenge, and an exploration of the geometrical underpinnings of canonical neural networks using a Jeffrey’s Prior sampling of trained networks.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2019-08-30

Publisher

Keywords

Computational physics

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Sethna, James Patarasp

Committee Co-Chair

Committee Member

Elser, Veit
Wittich, Peter

Degree Discipline

Physics

Degree Name

Ph.D., Physics

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record