eCommons

 

Heat kernel estimates for inner uniform subsets of Harnack-type Dirichlet space

dc.contributor.authorGyrya, Pavel
dc.date.accessioned2007-06-19T19:57:32Z
dc.date.available2012-06-19T06:06:34Z
dc.date.issued2007-06-19T19:57:32Z
dc.description.abstractThe main result of this thesis is the two-sided heat kernel estimates for both Dirichlet and Neumann problem in any inner uniform domain of the Euclidean space $\mathbb R^n$. The results of this thesis hold more generally for any inner uniform domain in many other spaces with Gaussian-type heat kernel estimates. We assume that the heat equation is associated with a local divergence form differential operator, or more generally with a strictly local Dirichlet form on a complete locally compact metric space. Other results include the (parabolic) Harnack inequality and the boundary Harnack principle.en_US
dc.format.extent846893 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.otherbibid: 6476332
dc.identifier.urihttps://hdl.handle.net/1813/7729
dc.language.isoen_USen_US
dc.subjectheat kernel estimatesen_US
dc.subjectHarnacken_US
dc.subjectinner uniform seten_US
dc.subjectDirichlet formen_US
dc.titleHeat kernel estimates for inner uniform subsets of Harnack-type Dirichlet spaceen_US
dc.typedissertation or thesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thesis.pdf
Size:
827.04 KB
Format:
Adobe Portable Document Format