eCommons

 

Matrix Sampling For Global Illumination

Other Titles

Abstract

Global illumination is the problem of rendering images by simulating the light transport in a scene, also considering the inter-reflection of light between surfaces. One general approach to global illumination that gained popularity during the last decade is the many-light formulation, whose idea is to approximate global illumination by many automatically generated virtual point lights. In this thesis, we address two fundamental issues that arise with the many-light formulation: scalability and generality. We present a new view of the many-light approach, by treating it as a large matrix of light-surface contributions. Our insight is that there is usually a significant amount of structure and redundancy in the matrix; this suggests that only a tiny subset of the elements might be needed for accurate reconstruction. First, we present a scalable rendering algorithm that exploits this insight by sampling a small subset of matrix rows and columns to reconstruct the image. This algorithm is very flexible in terms of the material and light types it can handle, and achieves high-quality rendering of complex scenes in several seconds on consumer-level graphics hardware. Furthermore, we extend this approach to render whole animations, by considering a 3D tensor of light-surface contributions over time. This allows us to further decrease the necessary number of samples by exploiting temporal coherence. We also address a long-standing limitation of all previous many-light approaches that leads to fundamentally incorrect results in scenes with glossy materials, by introducing a new virtual light type that does not have this limitation. Finally, we describe an algorithm that computes a wavelet-compressed approximation to the lighting matrix, which allows for interactive light placement in a scene with global illumination.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2009-10-14T19:50:42Z

Publisher

Keywords

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record