We are trying to improve the usability of eCommons and we need your help! Please sign up here - https://forms.gle/mBwXs4zfy75wvGNE7

eCommons

 

Model Reduction And Controller-Design Simplification For Bipedal Robots

Other Titles

Abstract

The main aims of a bipedal walking robot are to avoid falling and to generally move forward. Towards this end we consider controller reduction. This includes: What is the minimal set of states that a controller needs to sense in order to decide the required control actions? What is the minimal set of control actions that a controller needs to provide in order to reach the desired goals? The minimal set of states and control actions needed indicate that a simpler and reduced model of a bipedal robot can be used to control the balance and locomotion of a walking robot. Our primary approach is based on viable and controllable regions. The N-step viable region is the set of all states from where a robot can take at least N steps and not fall down. The N-step controllable region is the set of all states from where a robot can reach the desired goal (e.g., a given walking speed and step-length) in at most N steps. The similarity in sizes between these regions, for a full-order versus a reduced-order controller, are measures of the efficacy of the reduced controller. The compass-gait walking model, actuated by a hip motor and an impulsive push-off, is used as a testbed for developing and testing the controller-reduction principles. We show that a controller that commands only step-length and push-off, controls the robot almost as well as the most general controller that can swing the leg in arbitrary ways. In this reduced controller, the step-length and push-off are decided based on a single state variable, just after the heel-strike. This reduced controller covers a large fraction of the full controller's viable and controllable regions. The success of this reduced controller suggests that a point-mass model with foot placement (i.e., step-length) and push-off can be used by high-level walking controllers. Other separate projects described in this dissertation are 1) state estimation for the bipedal robot 'Cornell Ranger', 2) controllability analysis of a bicycle in zero gravity, 3) design of chains that can fall faster than gravity, and 4) notes on optimal stabilizing controllers for optimal trajectories.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2015-08-17

Publisher

Keywords

Bricycle; Chain paradox; Viability kernel

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Ruina,Andy Lee

Committee Co-Chair

Committee Member

Hencey,Brandon M.
Cohen,Itai

Degree Discipline

Theoretical and Applied Mechanics

Degree Name

M.S., Theoretical and Applied Mechanics

Degree Level

Master of Science

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record