eCommons

 

Approximation Techniques for Spatial Data

Other Titles

Abstract

Spatial Database Management Systems (SDBMS), e.g., Geographical
Information Systems, that manage spatial objects such as points, lines, and hyper-rectangles, often have very high query processing costs. Accurate selectivity estimation during query optimization therefore is crucially important for finding good query plans, especially when spatial joins are involved. Selectivity estimation has been studied for relational database systems, but to date has only received little attention in SDBMS. In this paper, we introduce novel methods that permit high-quality selectivity estimation for spatial joins and range queries. Our techniques can be constructed in a single scan over the input, handle inserts and deletes to the database incrementally, and hence they can also be used for processing of streaming spatial data. In contrast to previous approaches, our techniques return approximate results that come with provable probabilistic quality guarantees. We present a detailed analysis and experimentally demonstrate the efficacy of the proposed techniques.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2004-07-23

Publisher

Cornell University

Keywords

computer science; technical report

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cis/TR2004-1947

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record