eCommons

 

The Role Of Vitamin E Hydroxylases In Vitamin E Metabolism And Status

Other Titles

Abstract

Vitamin E is a group of compounds that are considered to be the most important lipophilic antioxidants, however there is still much unknown about the biological actions of the various forms of vitamin E as well as the mechanisms that influence the concentration of vitamin E forms in tissues. Despite the common predominance of mainly [gamma]-tocopherol ([gamma]-TOH) in the diet, [alpha]-TOH is present in serum and tissues at levels 5-6 times that of [gamma]-TOH. The biological rational for this selectivity remains an enigma. The focus of this work was on the selective postabsorptive catabolism of non-[alpha]-TOH forms via the vitamin E-[omega]-oxidation pathway. Cytochrome P450 4F2 (CYP4F2) is the only known human enzyme shown to display TOH-[omega]-hydroxylase activity. In an effort to investigate the role of TOH-[omega]-hydroxylase activity in vitamin E metabolism and status, the functional murine ortholog of CYP4F2 was identified and the consequences of its deletion on vitamin E metabolism and status were determined. In vivo and in vitro studies revealed Cyp4f14 to be the major, but not the only, vitamin E-[omega]-hydroxylase in mice, and to have critical function in regulating body-wide vitamin E status. Disruption of Cyp4f14 expression resulted in hyper-accumulation of [gamma]-TOH in mice fed a soybean oil diet in which the major tocopherol was [gamma]-TOH. Supplementation of Cyp4f14-/- mice with high levels of [delta]- and [gamma]-TOH exacerbated the tissue enrichment of these forms of vitamin E. Through the use of metabolic cage studies, previously unappreciated mechanisms of vitamin E elimination were discovered, which served to counterbalance the metabolic deficit observed in Cyp4f14-/- mice. Fecal elimination of unmetabolized TOHs was determined to be a high capacity mechanism to be minimize diet induced accumulation of TOHs, especially at high dietary levels. Additionally, novel [omega]-1 and [omega]-2 vitamin E hydroxylase activities were discovered and were found to quantitatively important vitamin E elimination mechanisms. Cyp4f14-/- mice also revealed the existence of other hepatic TOH-[omega]-hydroxylase enzyme(s). Therefore genetically modified mice, in which no CYP activity was present in the liver, were utilized in order to eliminate all hepatic vitamin E metabolism. Metabolic cage studies revealed the presence of vitamin E hydroxylase activity in non-hepatic tissues. Mouse and human small intestine mucosa were found to have TOH-[omega]-hydoxylase activity, representing at least one site of extra-hepatic vitamin E metabolism. Lastly, the use of cell culture studies demonstrated that two polymorphisms in CYP4F2 functionally alter TOH-[omega]-hydroxylase activity, which may play a role in vitamin E status in humans. Overall, the current works lends new insights into the physiological role of the TOH-[omega]oxidation pathway as well as reveals novel mechanisms of vitamin E metabolism in both mice and humans, which play an important role in the regulation of vitamin E status.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2012-08-20

Publisher

Keywords

vitamin E; cytochrome P450; metabolism

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Parker, Robert Stanley

Committee Co-Chair

Committee Member

Cassano, Patricia Ann
Gu, Zhenglong
O'Brien, Kimberly O

Degree Discipline

Nutrition

Degree Name

Ph. D., Nutrition

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record