eCommons

 

Sorting Helps for Voronoi Diagrams

Other Titles

Abstract

It is well known that, using standard models of computation, it requires Ω(n log n) time to build a Voronoi diagram for n data points. This follows from the fact that a Voronoi diagram algorithm can be used to sort. But if the data points are sorted before we start, can the Voronoi diagram be built any faster? We show that for certain interesting, although nonstandard types of Voronoi diagrams, sorting helps. These nonstandard types Voronoi diagrams use a convex distance function instead of the standard Euclidean distance. A convex distance function exists for any convex shape, but the distance functions based on polygons (especially triangles) lead to particularly efficient Voronoi diagram algorithms - fast algorithms using simple data structures. Specifically, a Voronoi diagram using a convex distance function based on a triangle can be built in O(n log log n) time after initially sorting the n data points twice. Convex distance functions based on other polygons require more initial sorting.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

1993-05

Publisher

Cornell University

Keywords

computer science; technical report

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR93-1347

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record