eCommons

 

Dynamic Hedging in a Volatile Market

dc.contributor.authorColeman, Thomas F.en_US
dc.contributor.authorKim, Yohanen_US
dc.contributor.authorLi, Yuyingen_US
dc.contributor.authorVerma, Arunen_US
dc.date.accessioned2007-04-02T21:18:12Z
dc.date.available2007-04-02T21:18:12Z
dc.date.issued2003-01-23en_US
dc.description.abstractIn financial markets, errors in option hedging can arise from two sources. First, the option value is a nonlinear function of the underlying; therefore, hedging is instantaneous and hedging with discrete rebalancing gives rise to error. Frequent rebalancing can be impractical due to transaction costs. Second, errors in specifying the model for the underlying price movement (model specification error) can lead to poor hedge performance. In this article, we compare the effectiveness of dynamic hedging using the constant volatility method, the implied volatility method, and the recent volatility function method [3]. We provide evidence that dynamic hedging using the volatility function method [3] produces smaller hedge error. We assume that there are no transaction costs, and both the risk-free interest rate r and the dividend rate q are constant.en_US
dc.format.extent119847 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.tc/2003-274en_US
dc.identifier.urihttps://hdl.handle.net/1813/5448
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjecttheory centeren_US
dc.titleDynamic Hedging in a Volatile Marketen_US
dc.typetechnical reporten_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2003-274.pdf
Size:
117.04 KB
Format:
Adobe Portable Document Format