eCommons

 

An Improved Simulation Result for Ink Bounded Turing Machines

Other Titles

Abstract

A (one tape, deterministic) Turing machine is f(n) ink bounded if the machine changes a symbol of its work tape at most O(f(n)) times while processing any input of length n. The main result of our paper is the construction of an "ink efficient" universal machine which, for any f(n) ink bounded machine M and input x, can simulate the processing of M on x or detect that M is looping infinitely on input x. The universal machine requires Extra open brace or missing close braceO(f(n)^{1+\epsilon)O(f(n)^{1+\epsilon) ink for this simulation where ϵ is an arbitrarily small positive number. As a corollary, we establish that the class of all f(n) ink bounded computations is properly contained in the class of all g(n) ink bounded computations assuming ninff(n)1+εg(n)=0 and a technical condition on g.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

1978-08

Publisher

Cornell University

Keywords

computer science; technical report

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR78-348

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record