eCommons

 

Normalization of IZF with Replacement

Other Titles

Abstract

IZF is a well investigated impredicative constructive version of Zermelo-Fraenkel set theory. Using set terms, we axiomatize IZF with Replacement, which we call IZF_R, along with its intensional counterpart IZF_R^-. We define a typed lambda calculus corresponding to proofs in IZF_R^- according to the Curry-Howard isomorphism principle. Using realizability for IZF_R^-, we show weak normalization of the calculus by employing a reduction-preserving erasure map from lambda terms to realizers. We use normalization to prove disjunction, numerical existence, set existence and term existence properties. An inner extensional model is used to show the properties for full, extensional IZF_R.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2006-04-25

Publisher

Cornell University

Keywords

computer science; technical report

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cis/TR2006-2024

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record