eCommons

 

Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases

dc.contributor.authorZhou, Feng
dc.contributor.authorMoore, Arden
dc.contributor.authorBolinsson, Jessica
dc.contributor.authorPersson, Ann
dc.contributor.authorFroberg, Linus
dc.contributor.authorPettes, Michael
dc.contributor.authorKong, Huijun
dc.contributor.authorRabenberg, Lew
dc.contributor.authorCaroff, Philippe
dc.contributor.authorStewart, Derek
dc.contributor.authorMingo, Natalio
dc.contributor.authorDick, Kimberly
dc.contributor.authorSamuelson, Lars
dc.contributor.authorLinke, Heiner
dc.contributor.authorShi, Li
dc.date.accessioned2011-05-25T16:01:29Z
dc.date.available2011-05-25T16:01:29Z
dc.date.issued2011-05-19
dc.description.abstractThe thermal conductivity of wurtzite and zinc blende indium arsenide nanowires was measured using a microfabricated device, with the crystal structure of each sample controlled during growth and determined by transmission electron microscopy. Nanowires of both phases showed a reduction of thermal conductivity by a factor of 2 or more compared to values reported for zinc blende indium arsenide bulk crystals within the measured temperature range. Theoretical models were developed to analyze the measurement results and determine the effect of phase on phonon transport. Branch-specific phonon dispersion data within the discretized first Brillouin zone were calculated from first principles and used in numerical models of volumetric heat capacity and thermal conductivity. The combined results of the experimental and theoretical studies suggest that wurtzite indium arsenide possesses similar volumetric heat capacity, weighted average group velocity, weighted average phonon-phonon scattering mean free path, and anharmonic scattering-limited thermal conductivity as the zinc blende phase. Hence, we attribute the differing thermal conductivity values observed in the indium arsenide nanowires of different phases to differences in the surface scattering mean free paths between the nanowire samples.en_US
dc.identifier.citationF. Zhou, A. L. Moore, J. Bolinsson, A. Persson, L. Froberg, M. T. Pettes, H. Kong, L. Rabenberg, P. Caroff, D. A. Stewart, N. Mingo, K. A. Dick, L. Samuelson, H. Linke, and L. Shi, Phys. Rev. B, 83, 205416 (2011).en_US
dc.identifier.otherDOI: 10.1103/PhysRevB.83.205416
dc.identifier.urihttps://hdl.handle.net/1813/22944
dc.language.isoen_USen_US
dc.publisherAmerican Physical Societyen_US
dc.subjectnanowireen_US
dc.subjectindium arsenideen_US
dc.subjectthermal conductivityen_US
dc.subjectdensity functional theoryen_US
dc.subjectheat transferen_US
dc.subjectwurtziteen_US
dc.subjectzincblendeen_US
dc.subjectphononen_US
dc.subjectInAsen_US
dc.subjectheat capacityen_US
dc.titleThermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phasesen_US
dc.typearticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thermal_conductivity_of_indium_arsenide_nanowires_with_wurtzite_and_zincblende_phases.pdf
Size:
837.39 KB
Format:
Adobe Portable Document Format
Description:
Main article