The A-B transition in superfluid 3He under confinement in a thin slab geometry
No Access Until
Permanent Link(s)
Collections
Other Titles
Abstract
The influence of confinement on the topological phases of superfluid 3He is studied using the torsional pendulum method. We focus on the phase transition between the chiral A-phase and the time-reversal-invariant B-phase, motivated by the prediction of a spatially-modulated (stripe) phase at the A-B phase boundary. We confine superfluid 3He to a single 1.08 μm thick nanofluidic cavity incorporated into a high-precision torsion pendulum, and study the pressure dependence of the phase diagram between 0.1 and 5.6 bar. We observe only small supercooling of the A-phase, in comparison to bulk or when confined in aerogel. This has a non-monotonic pressure dependence, suggesting that a new intrinsic B-phase nucleation mechanism operates under confinement, mediated by the putative stripe phase. Both the pressure dependence of the phase diagram and the relative superfluid fraction of the A and B phases, show that strong coupling is present at all pressures, with implications for the stability of the stripe phase.