eCommons

 

The A-B transition in superfluid 3He under confinement in a thin slab geometry

Other Titles

Abstract

The influence of confinement on the topological phases of superfluid 3He is studied using the torsional pendulum method. We focus on the phase transition between the chiral A-phase and the time-reversal-invariant B-phase, motivated by the prediction of a spatially-modulated (stripe) phase at the A-B phase boundary. We confine superfluid 3He to a single 1.08 μm thick nanofluidic cavity incorporated into a high-precision torsion pendulum, and study the pressure dependence of the phase diagram between 0.1 and 5.6 bar. We observe only small supercooling of the A-phase, in comparison to bulk or when confined in aerogel. This has a non-monotonic pressure dependence, suggesting that a new intrinsic B-phase nucleation mechanism operates under confinement, mediated by the putative stripe phase. Both the pressure dependence of the phase diagram and the relative superfluid fraction of the A and B phases, show that strong coupling is present at all pressures, with implications for the stability of the stripe phase.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2017

Publisher

Keywords

Helium-3, confinement, thin films, nanofluidic cell

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Attribution-NonCommercial 4.0 International

Types

dataset

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record