eCommons

 

Optimal Loop Parallelization

Other Titles

Abstract

Parallelizing compilers promise to exploit the parallelism available in a given program, particularly parallelism that is too low-level or irregular to be expressed by hand in an algorithm. However, existing parallelization techniques do not handle loops in a satisfactory manner. Fine-grain (instruction level) parallelization, or compaction, captures irregular parallelism inside a loop body but does not exploit parallelism across loop iterations. Coarser methods, such as doacross [9], sacrifice irregular forms of parallelism in favor of pipelining iterations (software pipelining). Both of these approaches often yield suboptimal speedups even under the best conditions-when resources are plentiful and processors are synchronous. In this paper we present a new technique bridging the gap between fine-and coarse-grain loop parallelization, allowing the exploitation of parallelism inside and across loop iterations. Furthermore, we show that, given a loop and a set of dependencies between its statements, the execution schedule obtained by our transformation is time optimal: no transformation of the loop based on the given data-dependencies can yield a shorter running time for that loop.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

1988-03

Publisher

Cornell University

Keywords

computer science; technical report

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR88-905

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record