eCommons

 

On Configurations Of Spatial Planar Graphs

dc.contributor.authorMarshall, Andrewen_US
dc.contributor.chairHatcher, Allen Een_US
dc.contributor.committeeMemberRiley, Timothy R.en_US
dc.contributor.committeeMemberBrown, Kenneth Stephenen_US
dc.date.accessioned2015-01-07T20:56:54Z
dc.date.available2019-08-19T06:00:45Z
dc.date.issued2014-08-18en_US
dc.description.abstractWe investigate the homotopy type of a variety of families of configurations of graphs in R3 and S 3 . Preliminary results give that the linear configurations of the tetrahedral graph in R3 has the homotopy type of the double mapping cylinder SO(3)/A4 ← SO(3)/A3 [RIGHTWARDS ARROW] SO(3)/S3 , for An the alternating group and Sn the symmetric group. Two presentations and an action on the free group are given. This result is generalized to two families of configuration spaces of codimension 2 and 3 skeleta of simplices in Rn . The final segment is toward understanding the space of unknotted smooth embeddings of spatial planar graphs.en_US
dc.identifier.otherbibid: 8793235
dc.identifier.urihttps://hdl.handle.net/1813/38748
dc.language.isoen_USen_US
dc.subjectConfiguration Spacesen_US
dc.subjectTopological Graph Theoryen_US
dc.subjectAlgebraic Topologyen_US
dc.titleOn Configurations Of Spatial Planar Graphsen_US
dc.typedissertation or thesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorCornell Universityen_US
thesis.degree.levelDoctor of Philosophy
thesis.degree.namePh. D., Mathematics

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
alm255.pdf
Size:
614.25 KB
Format:
Adobe Portable Document Format