eCommons

 

Shifts in Hudson River Valley Flood Frequency Following Eastern Hemlock Loss and Succession

Other Titles

Abstract

Hydrologic models are often used to predict flooding risk driven by land surface features and meteorology. These models can be useful in estimating the consequences of the intersection of two ongoing events in the Catskill region: increased precipitation extremes and the rapid dieback of Eastern hemlock, a foundation tree species. However, simulation of transpiration in these models tends to be erroneous, with storage of water in the plants emerging as a cumbersome process to simulate. In order to improve the fidelity of modeled plant hydraulics, it is important to avoid errors originating from the simplification of the storage of water within plants. Research has found that simulating tree water storage improves model calibration. We investigate water storage in four common conifers as captured by StorAge Selection (SAS) functions generated via a machine learning-based model. We generate model inputs through stable water isotope-tracer based experiments conducted in both growth chamber and field site settings, examining how key environmental variables drive changes in SAS functions. We integrate the SAS framework, enhanced by our experimental data, into a hydrologic model, and assess whether model performance is improved. Finally, we utilize this model to simulate hydrological impact of hemlock loss under different climate scenarios.

Journal / Series

Volume & Issue

Description

This report was prepared for the New York State Water Resources Institute (NYSWRI) with support from the U.S. Geological Survey under Grant/ Cooperative Agreement No. G16AP00073

Sponsorship

Date Issued

2019

Publisher

New York State Water Resources Institute

Keywords

USGS; Cornell University; Hudson River

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Attribution-NonCommercial 4.0 International

Types

report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record