Decision Making And Inference Under Limited Information And High Dimensionality
Files
No Access Until
Permanent Link(s)
Collections
Other Titles
Author(s)
Abstract
Statistical inference in high-dimensional probabilistic models is one of the central problems of statistical machine learning and stochastic decision making. To date, only a handful of distinct methods have been developed, most notably (Markov Chain Monte Carlo) sampling, decomposition, and variational methods. In this dissertation, we will introduce a fundamentally new approach based on random projections and combinatorial optimization. Our approach provides provable guarantees on accuracy, and outperforms traditional methods in a range of domains, in particular those involving combinations of probabilistic and causal dependencies (such as those coming from physical laws) among the variables. This allows for a tighter integration between inductive and deductive reasoning, and offers a range of new modeling opportunities. As an example, we will discuss an application in the emerging field of Computational Sustainability aimed at discovering new fuel-cell materials where we greatly improved the quality of the results by incorporating prior background knowledge of the physics of the system into the model.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
Publisher
Keywords
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Selman, Bart