eCommons

 

A Quasi-Newton L2-Penalty Method for Minimization Subject to Nonlinear Constraints

dc.contributor.authorColeman, Thomas F.en_US
dc.contributor.authorYuan, Weien_US
dc.date.accessioned2007-04-04T16:07:44Z
dc.date.available2007-04-04T16:07:44Z
dc.date.issued1995-02en_US
dc.description.abstractWe present a modified L2 penalty function method for equality constrained optimization problems. The pivotal feature of our algorithm is that at every iterate we invoke a special change of variables to improve the ability of the algorithm to follow the constraint level sets. This change of variables gives rise to a suitable block diagonal approximation to the Hessian which is then used to construct a quasi-Newton method. We show that the complete algorithm is globally convergent with a local Q-superlinearly convergence rate. Preliminary results are given for a few problems.en_US
dc.format.extent340118 bytes
dc.format.extent471996 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.tc/95-206en_US
dc.identifier.urihttps://hdl.handle.net/1813/5544
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjecttheory centeren_US
dc.titleA Quasi-Newton L2-Penalty Method for Minimization Subject to Nonlinear Constraintsen_US
dc.typetechnical reporten_US

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
95-206.pdf
Size:
332.15 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
95-206.ps
Size:
460.93 KB
Format:
Postscript Files