eCommons

 

A Quasi-Newton L2-Penalty Method for Minimization Subject to Nonlinear Constraints

Other Titles

Abstract

We present a modified L2 penalty function method for equality constrained optimization problems. The pivotal feature of our algorithm is that at every iterate we invoke a special change of variables to improve the ability of the algorithm to follow the constraint level sets. This change of variables gives rise to a suitable block diagonal approximation to the Hessian which is then used to construct a quasi-Newton method. We show that the complete algorithm is globally convergent with a local Q-superlinearly convergence rate. Preliminary results are given for a few problems.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

1995-02

Publisher

Cornell University

Keywords

theory center

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.tc/95-206

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record