Redox-Active Covalent Organic Frameworks And Porous Polymers For Electrochemical Energy Storage
Loading...
Files
No Access Until
Permanent Link(s)
Collections
Other Titles
Authors
Abstract
Covalent organic frameworks (COFs) are an emerging class of crystalline two- or threedimensional polymers, discovered in 2005, with the ability to reliably incorporate functionality within high surface area scaffolds. Early COF literature primarily focused on structural elucidation of boron-based systems and typically alluded to a myriad of applications where the structural precision offered by COFs would be useful. However, these early systems suffered from hydrolytic and oxidative instability which precluded their use in applications. This dissertation describes a recent trend in COFs away from boron-based systems to more inherently robust nitrogen containing frameworks (Chapter 1). We illustrate this by discussing the development of the first redox-active COF which brought COFs into a new application space, namely electrochemical energy storage (Chapter 2). Initially, the performance of the COF was limited by its isolation as in insoluble powder and low electrical conductivity. However, we have addressed these issue through rational design first by targeting thin films (Chapter 3) and subsequently by examining the performance of a COF / conducting polymer hybrid (Chapter 4). We then applied the same electrochemical reasoning of COFs to a less ordered amorphous porous polymer where we expanded the energy density by controlling the cation of the electrolyte (Chapter 5). This work will serve as a roadmap for the design of future framework materials for electrochemical energy storage. i
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
2016-05-29
Publisher
Keywords
covalent organic frameworks; electrochemical energy storage; porous polymers
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Dichtel,William Robert
Committee Co-Chair
Committee Member
Coates,Geoffrey
Abruna,Hector D
Abruna,Hector D
Degree Discipline
Chemistry and Chemical Biology
Degree Name
Ph. D., Chemistry and Chemical Biology
Degree Level
Doctor of Philosophy
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
dissertation or thesis