eCommons

 

ELASTOMERIC MATERIAL CHEMISTRIES FOR ADDITIVE MANUFACTURING OF SOFT MACHINES

Other Titles

Abstract

Stereolithography is a rapid, high resolution, and scalable additive manufacturing technique that uses patterned light to build a solid object, layer-by- layer, from a liquid resin of photopolymerizable material. However, the material processing requirements, namely low viscosity and rapid photopolymerization, previously restricted printable materials to highly crosslinked and glassy polymers that exhibit low ultimate strains and prevent technical applications in biomedicine and soft robotics. This dissertation begins by reviewing the existing literature’s attempt to additively manufacture soft machines, particularly soft robots. With the problem defined, I then attempt to address the gaps in materials compatibility with stereolithography printing by designing two chemical platforms. First, by incorporating dynamic ionic linkages between anionic nanoparticles and cationic acrylates, we demonstrate tough, elastomeric polyacrylamide-based hydrogels. Such ionic composite hydrogels exhibit fast gelation, remarkable ionic conductivity (1MHz =1.8x10-3 S m-1 ), and large ultimate elongations (ult > 400%) and can be printed into osmotic actuators and soft conductive traces. Second, employing thiol-ene click chemistry of mercaptosiloxanes and vinylsiloxanes enables precise control of the polymer network density and thereby the mechanical properties over orders of magnitude (stiffness, 6 kPa < E < 330 kPa; ultimate elongation, 50% < ult < 400%). A simple, low cost modification to common commercial desktop printers enables printing of this silicone chemistry into highly resilient soft machines. Fluidic elastomer actuators, when fabricated through this method, can be pressurized with the base liquid resin to impart autonomic self-healing upon puncture in ambient sunlight.

Journal / Series

Volume & Issue

Description

Supplemental file(s) description: Supplemental Videos

Sponsorship

Date Issued

2018-08-30

Publisher

Keywords

Stereolithography; 3D Printing; Soft Robotics; Materials Science; Polymer chemistry; Elastomers

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Shepherd, Robert F.

Committee Co-Chair

Committee Member

Archer, Lynden A.
Bonassar, Lawrence

Degree Discipline

Materials Science and Engineering

Degree Name

Ph. D., Materials Science and Engineering

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record