eCommons

 

Structure and Efficient Hessian Calculation

dc.contributor.authorColeman, Thomas F.en_US
dc.contributor.authorVerma, Arunen_US
dc.date.accessioned2007-04-04T16:31:50Z
dc.date.available2007-04-04T16:31:50Z
dc.date.issued1996-08en_US
dc.description.abstractModern methods for numerical optimization calculate (or approximate) the matrix of second derivatives, the Hessian matrix, at each iteration. The recent arrival of robust software for automatic differentiation allows for the possibility of automatically computing the Hessian matrix, and the gradient, given a code to evaluate the objective function itself. However, for large-scale problems direct application of automatic differentiation may be unacceptably expensive. Recent work has shown that this cost can be dramatically reduced in the presence of sparsity. In this paper we show that for structured problems it is possible to apply automatic differentiation tools in an economical way - even in the absence of sparsity in the Hessian.en_US
dc.format.extent217063 bytes
dc.format.extent252507 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.tc/96-258en_US
dc.identifier.urihttps://hdl.handle.net/1813/5588
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjecttheory centeren_US
dc.subjectHessian matrixen_US
dc.subjectautomatic differentiationen_US
dc.subjectstructured computationen_US
dc.subjectsparsityen_US
dc.titleStructure and Efficient Hessian Calculationen_US
dc.typetechnical reporten_US

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
96-258.pdf
Size:
211.98 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
96-258.ps
Size:
246.59 KB
Format:
Postscript Files