Structure and Efficient Hessian Calculation

Other Titles
Abstract
Modern methods for numerical optimization calculate (or approximate) the matrix of second derivatives, the Hessian matrix, at each iteration. The recent arrival of robust software for automatic differentiation allows for the possibility of automatically computing the Hessian matrix, and the gradient, given a code to evaluate the objective function itself. However, for large-scale problems direct application of automatic differentiation may be unacceptably expensive. Recent work has shown that this cost can be dramatically reduced in the presence of sparsity. In this paper we show that for structured problems it is possible to apply automatic differentiation tools in an economical way - even in the absence of sparsity in the Hessian.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
1996-08
Publisher
Cornell University
Keywords
theory center; Hessian matrix; automatic differentiation; structured computation; sparsity
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.tc/96-258
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
technical report
Accessibility Feature
Accessibility Hazard
Accessibility Summary
Link(s) to Catalog Record