Incorporating Conditionally Representative Auxiliary Information in Data Fusion

Other Titles
Abstract
In data fusion analysts seek to combine information from two databases comprised of disjoint sets of individuals, in which some variables appear in both databases and other variables appear in only one database. Most data fusion techniques rely on variants of conditional independence assumptions, which can lead to unreliable inferences if this assumption is not satisfied. We propose a data fusion technique that allows analysts to easily incorporate auxiliary information (glue) on the dependence structure of variables not observed jointly. Using simulations, we illustrate the benefits of leveraging the information in glue. We also perform a data fusion experiment with the goal to fuse two surveys from the book publisher HarperCollins, using glue obtained from the Internet polling company CivicScience. Due to the convenience sampling nature of the auxiliary online survey, we find that the glue is not representative of the population sampled by HarperCollins. This is a scenario very likely to be encountered in practice, and points to the more general problem of combining information from multiple data sources that are not all probability samples of the same population. We discuss current work in this direction.
Journal / Series
Volume & Issue
Description
Thanks to -Coauthors: Bailey Fosdick (CSU) and Jerry Reiter (Duke) -Working group members from SAMSI program on Computational Methods in Social Sciences, 2013-2014 -HarperCollins Publishers -CivicScience
Sponsorship
Research supported by the National Science Foundation under award SES-11-31897.
Date Issued
2015-10-07
Publisher
Keywords
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
presentation
Accessibility Feature
Accessibility Hazard
Accessibility Summary
Link(s) to Catalog Record