Cross-Stage Logic and Architectural Synthesis: with Applications to Specialized Circuits and Programmable Processors

Other Titles



Technology scaling, architectural innovations, and electronic design automation (EDA) are the three pillars supporting the exponential growth in computer hardware performance for the past six decades. With the traditional CMOS scaling approaching its end, there is an urgent need to explore novel techniques in the latter two aspects to sustain the long-standing trend of ever increasing computing performance and energy efficiency. This thesis studies new logic and architectural synthesis techniques that aim to significantly improve both productivity and quality for the digital hardware design. We re-examine the boundaries in the traditional EDA flow with the goals of (i) identifying and overcoming deficiencies in existing, well-established logic-level optimization methods, and (ii) raising the level of abstraction to ease architectural-level exploration for hardware specialization. A common theme in this thesis is cross-stage optimization, where the synthesis decisions at an early stage are made aware of downstream optimization in an efficient manner to maximize the quality of results (QoRs). More specifically, we apply cross-stage optimization to tackle four challenging synthesis problems at logic and architectural level. At the logic level, we investigate both exact and approximate synthesis techniques: (P1) PIMap improves the quality of logic optimization by iteratively restructuring the logic network guided by technology mapping; (P2) SCALS generates approximate circuits with statistical guarantees. At the architectural level, we target both specialized and programmable engines: (P3) ElasticFlow compiles irregular loop nests into specialized accelerators optimized for average-case performance; (P4) ASSIST synthesizes an instruction set architecture (ISA) description into programmable processor.

Journal / Series

Volume & Issue



Date Issued




Architectural Synthesis; Cross-Stage Optimization; Electronic Design Automation; Logic Synthesis; Computer engineering; Engineering


Effective Date

Expiration Date




Union Local


Number of Workers

Committee Chair

Zhang, Zhiru

Committee Co-Chair

Committee Member

Lal, Amit
Studer, Christoph
Sampson, Adrian L

Degree Discipline

Electrical and Computer Engineering

Degree Name

Ph. D., Electrical and Computer Engineering

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)


Link(s) to Reference(s)

Previously Published As

Government Document




Other Identifiers


Rights URI


dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record