eCommons

 

A Theory of Term Importance in Automatic Text Analysis

Other Titles

Abstract

Most existing automatic content analysis and indexing techniques are based on word frequency characteristics applied largely in an ad hoc manner. Contradictory requirements arise in this connection, in that terms exhibiting high occurence frequencies in individual documents are often useful for high recall performance (to retrieve many relevant items), whereas terms with low frequency in the whole collection are useful for high precision (to reject nonrelevant items).

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

1974-07

Publisher

Cornell University

Keywords

computer science; technical report

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR74-208

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record