eCommons

 

Placing the Largest Similar Copy of a Convex Polygon Among Polygonal Obstacles

dc.contributor.authorChew, L. Paulen_US
dc.contributor.authorKedem, Klaraen_US
dc.date.accessioned2007-04-23T17:41:29Z
dc.date.available2007-04-23T17:41:29Z
dc.date.issued1989-01en_US
dc.description.abstractGiven a convex polygon $P$ and an environment consisting of polygonal obstacles, we find the largest similar copy of $P$ that does not intersect any of the obstacles. Allowing translation, rotation, and change-of-size, our method combines a new notion of Delaunay triangulation for points and edges with the well-known functions based on Davenport-Schinzel sequences producing an almost quadratic algorithm for the problem. Namely, if $P$ is a convex $k$-gon and if $Q$ has $n$ corners and edges then we can find the placement of the largest similar copy of $P$ in the environment $Q$ in time $O (k^{4}n \lambda_{4}(kn)$ log$n$), where \lambda_{4} is one of the almost-linear functions related to Davenport-Schinzel sequences. If the environment consists only of points then we can find the placement of the largest similar copy of $P$ in time $O (k^{2}n \lambda_{3}(kn)$ log $n$).en_US
dc.format.extent1509077 bytes
dc.format.extent464857 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR89-964en_US
dc.identifier.urihttps://hdl.handle.net/1813/6880
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjectcomputer scienceen_US
dc.subjecttechnical reporten_US
dc.titlePlacing the Largest Similar Copy of a Convex Polygon Among Polygonal Obstaclesen_US
dc.typetechnical reporten_US

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
89-964.pdf
Size:
1.44 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
89-964.ps
Size:
453.96 KB
Format:
Postscript Files