eCommons

 

On the Complexity of Kinodynamic Planning

Other Titles

Abstract

In robotics, kinodynamic planning attempts to solve a motion problem subject to simultaneous kinematic and dynamic constraints. We consider the following problem: given a robot system, find a minimal-time trajectory from a start position and velocity to a goal position and velocity, while avoiding obstacles and respecting dynamic constraints on velocity and acceleration. We consider the simplified case of a point mass under Newtonian mechanics, together with velocity and acceleration bounds. The point must be flown from a start to a goal, amidst polyhedral obstacles in 2D or 3D. While exact solutions to this problem are not known, we provide the first provably good approximation algorithm, and show that it runs in polynomial time.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

1988-08

Publisher

Cornell University

Keywords

computer science; technical report

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR88-929

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record