Computing a Trust Region Step for a Penalty Function

Other Titles
Abstract
We consider the problem of minimizing a quadratic function subject to an ellipsoidal constraint when the matrix involved is the Hessian of a quadratic penalty function (i.e., a function of the form $p(x) = f(x) + \frac{1}{2\mu} c(x)^{T} c(x))$. Most applications of penalty functions require $p(x)$ to be minimized for values of $\mu$ decreasing to zero. In general, as $\mu$ tends to zero the nature of finite precision arithmetic causes a considerable loss of information about the null space of the constraint gradients when $\nabla^{2}p(x)$ is formed. This loss of information renders ordinary trust region Newton's methods unstable and degrades the accuracy of the solution to the trust region problem. The algorithm of More and Sorenson [1983] is modified so as to be more stable and less sensitive to the nature of finite precision arithmetic in this situation. Numerical experiments clearly demonstrate the stability of the proposed algorithm.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
1987-07
Publisher
Cornell University
Keywords
computer science; technical report
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR87-847
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
technical report
Accessibility Feature
Accessibility Hazard
Accessibility Summary
Link(s) to Catalog Record